

Alzheimer's Disease Apolipoprotein Pathology for Treatment Elucidation and Development

Agustín Ruiz MD PhD

Fundació ACE. Institut Català de Neurociències Aplicades. Universitat Internacional de Catalunya. Barcelona. Spain

The Biomedical Research Centre Network for Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Spain.

on behalf of ADAPTED

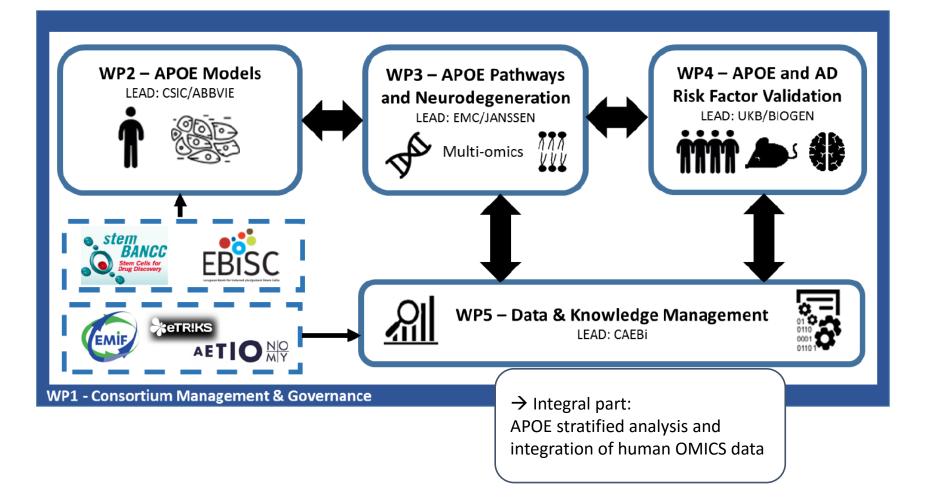
- **1.** *Increased APOE understanding*: Clarification of the role of APOE as a risk factor in the development of AD
 - unbiased
 - human focus
 - leveraging current technologies, e.g. large data sets, -omics, iPSC
- 2. Identification of promising entry points (*targets*) for the treatment of AD
- 3. Generation and validation of selected high value APOE-related model systems
- Uncover the basic scientific evidence required to progress the development of a stratified approach

Total budget, duration and current status

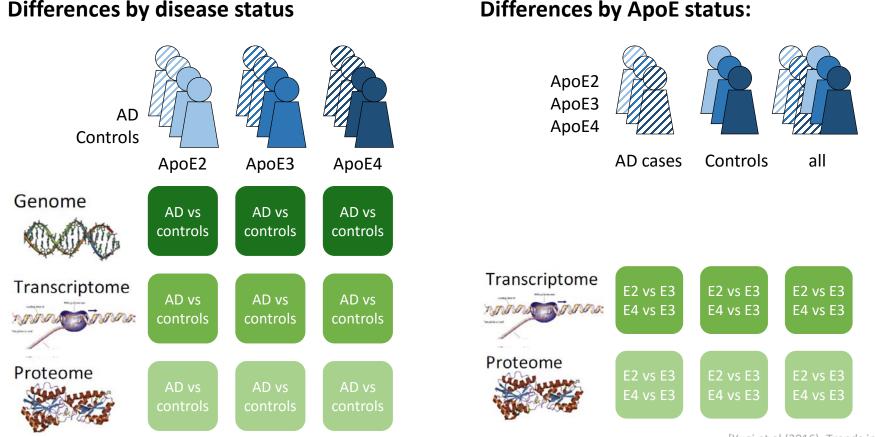
- Committed EFPIA in-kind contribution: € 3 million
- IMI-JU funding: € 3,5 million
- 3 year project: Oct 1, 2016 Sept 30, 2019

Project Participants & Organization

Project jointly led by



- Fundació ACE (Institut Català de Neurociències Aplicades, Barcelona (coordinator)
- AbbVie (leader)
- 3 EFPIA participants (AbbVie, Janssen and Biogen)
- 10 Academic/non-profit research organizations/SMEs
- 6 Countries (Belgium, Germany, Netherlands, Spain, UK, USA)
- 5 Work Packages

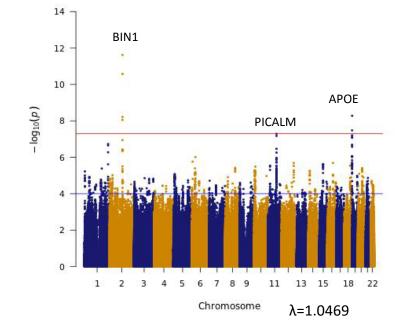


APOE stratified analysis and integration of human OMICS data

Differences by disease status

[Yugi et al (2016), Trends in Biotechnology]

Genes with suggestive genotype specific AD associations identified by GWAS ADAPTED

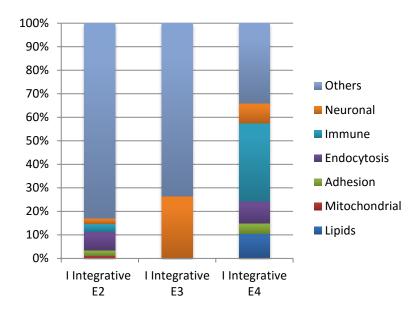

Stratified GWAS analysis on AD status:

- in two stages (stage I and stage II)
- In total 27,841 samples: ApoE2:2447, ApoE3 14,404, ApoE4: 10,990
- adjusted gender, PMI, age and race

Significant loci of combined analysis (p-value(Stage I)<0.001, p-value(Stage II)<0.05 and p-value(Stage I+II)<0.0001):

- ApoE2: 1 locus
- ApoE3: 10 loci
- ApoE4: 6 loci

Manhattan plot of ApoE3 GWAS (stage I and II) Filtered for maf >0.5

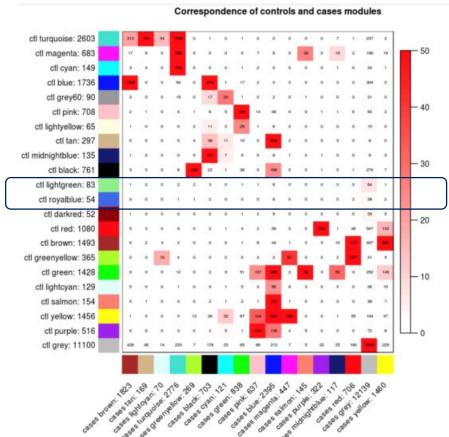

Integrative scoring enables aggregating genomics and transcriptomics results ADAPTED

Integrative analysis - Scoring

- robust rank aggregation (RRA) used to integrate ranked gene lists from the GWAS metaanalysis, the brain and blood expression analysis
- genes were given a final rank according to the calculated RRA scores sorted in ascending order

Pathway analysis:

- performed on top 200 genes scored by RRA with WebGestalt
- Immune pathways were enriched in top genes from ApoE2 and ApoE4 stratum



Network analysis to investigate genotype specific processes

Co-Expression network analysis:

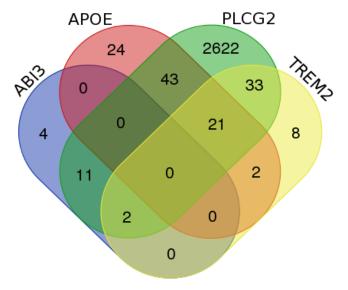
- performed for the largest gene expression data set (ROS/MAP study) for cases and controls
- → Most co-expression modules are preserved in case and controls
- → few modules show poor evidence of preservation between co-expression in controls and cases
 → are enriched for immune related pathways
 → include genes that are differentially expressed between cases with ApoE2 and cases with ApoE4

Looking for therapeutic entry points for Alzheimer's disease: lessons learned from agnostic trans-co-regulatory network analyses of APOE, TREM2, PLCG2 and ABI3 loci.

Table 1: Top ten pathways associated to AD risk genes agnostictrans-coregulatory networks

geneset	Top 10 APOE co-regulated pathways	Enrichment	FDR p-value	geneset	TOP 10 TREM2 co-regulated pathways	Enrichment	FDR p-value
GO:0072376	protein activation cascade	20,09	4,34E-07	GO:0002683	negative regulation of immune system process	8,29	1,17E-05
GO:0006959	humoral immune response	10,89	9,41E-06	GO:0002253	activation of immune response	6,56	2,17E-05
GO:0050727	regulation of inflammatory response	5,99	1,53E-03	GO:0050865	regulation of cell activation	6,17	9,76E-05
GO:1901342	regulation of vasculature development	6,05	7,26E-03	GO:0006638	neutral lipid metabolic process	12,37	1,63E-03
GO:0052547	regulation of peptidase activity	4,66	7,26E-03	GO:0006898	receptor-mediated endocytosis	7,29	1,91E-03
GO:0010035	response to inorganic substance	4,19	7,26E-03	GO:0002764	immune response-regulating signaling pathway	5,31	1,93E-03
GO:0002253	activation of immune response	4,08	7,95E-03	GO:0072376	protein activation cascade	15,20	2,04E-03
GO:0002526	acute inflammatory response	8,06	9,44E-03	GO:0006909	phagocytosis	7,99	2,34E-03
GO:0007568	aging	5,18	1,29E-02	GO:0050727	regulation of inflammatory response	6,53	2,34E-03
GO:1901565	organonitrogen compound catabolic process	4,42	1,46E-02	GO:0034341	response to interferon-gamma	9,42	3,07E-03
geneset	TOP 10 PLCG2 co-regulated pathways	Enrichment	FDR p-value	geneset	TOP 10 ABI3 co-regulated pathways	Enrichment	FDR p-value
GO:0001819	positive regulation of cytokine production	5,80	0	GO:0007159	leukocyte cell-cell adhesion	14,85	8,36E-04
GO:0002250	adaptive immune response	7,54	0	GO:0022407	regulation of cell-cell adhesion	15,51	3,52E-03
GO:0002253	activation of immune response	6,76	0	GO:0070661	leukocyte proliferation	17,62	1,40E-02
GO:0002263	cell activation involved in immune response	7,34	0	GO:0031589	cell-substrate adhesion	15,57	1,69E-02
GO:0002274	myeloid leukocyte activation	8,70	0	GO:0007015	actin filament organization	14,38	1,84E-02
GO:0002443	leukocyte mediated immunity	7,11	0	GO:0050900	leukocyte migration	12,75	2,45E-02
GO:0002521	leukocyte differentiation	6,28	0	GO:0050865	regulation of cell activation	9,94	5,42E-02
GO:0002683	negative regulation of immune system process	4,63	0	GO:0006909	phagocytosis	16,56	6,43E-02
GO:0002697	regulation of immune effector process	6,11	0	GO:0048872	homeostasis of number of cells	15,61	6,79E-02
GO:0002764	immune response-regulating signaling pathway	6,95	0	GO:0033627	cell adhesion mediated by integrin	43,55	7,05E-02

Ruiz et al. AAIC 2018. Alzheimers Dementia. July 2018. Volume 14, Issue 7, P1117–P1118 Kleineidam et al. (manuscript in preparation)



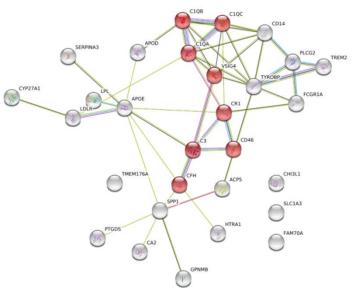

Looking for therapeutic entry points for Alzheimer's disease: lessons learned from agnostic trans-co-regulatory network analyses of APOE, TREM2, PLCG2 and ABI3 loci.

Figure 1: Venn diagram. Shared coregulated networks of genes observed in four AD risk loci. APOE-PLCG2 (n=43) and APOE-PLCG2-TREM2 (n=21) gene sets were selected for additional enrichment analyses.

Figure 2: STRING results only using common genes observed in *APOE*, *PLCG2* and *TREM2* agnostic coregulatory networks. FDR pvalue=0. Top Pathway predicted was complement activation (FDR p-value=1.09E-11, proteins in red)

Ruiz et al. AAIC 2018. Alzheimers Dementia. July 2018. Volume 14, Issue 7, P1117–P1118 Kleineidam et al. (manuscript in preparation)

Thanks for your attention

Questions?

Ideas?

