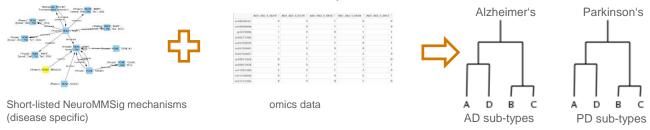
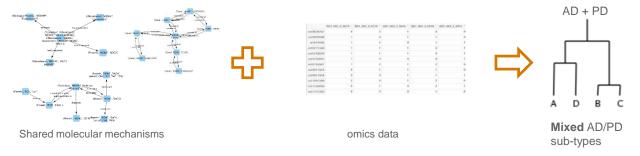

Mechanism Based Stratification of Patient-Level Data

Holger Fröhlich 30.11.2018

A Hypothetical Molecular Mechanism Based Disease **Taxonomy**

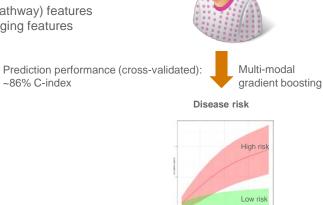


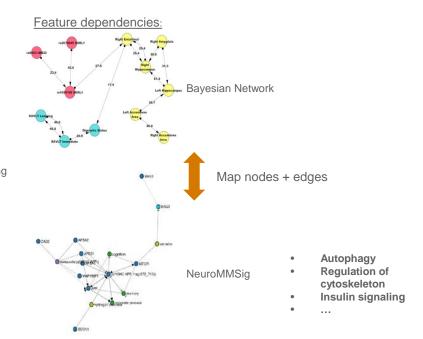


Realizing a Mechanism Based Disease Taxonomy

1.) Mechanism based stratification within separate diseases

2.) Joint AD/PD stratification by shared mechanisms

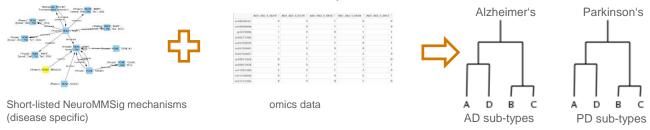

NeuroMMSig Mechanisms can be Linked to Alzheimer's Disease Risk


Machine learning based prediction of time to AD diagnosis

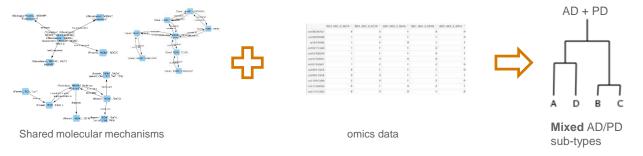
time

Multi-scale data (ADNI, ~900 normal / MCI patients):

- Clinical features, incl. neuropsychological assessment scores
- SNPs
- Genetic (pathway) features
- Neuro-imaging features



External validation with AddNeuroMed ongoing



Realizing a Mechanism Based Disease Taxonomy

1.) Mechanism based stratification within separate diseases

2.) Joint AD/PD stratification by shared mechanisms

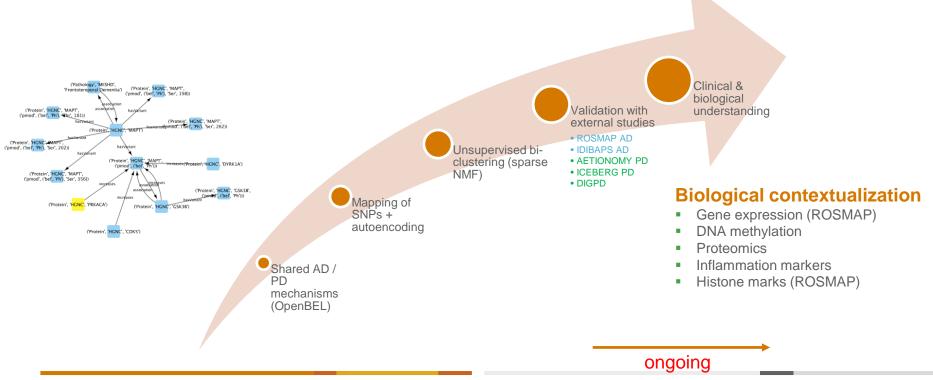
Which omics data to use?

			AD							PD		
	ADNI	ROSMAP	IDIBAPS	INSIGHT	UKB	PPMI		DIGPD	ICEBERG	AETIONOMY PD	KCL	Tübingen
N (disease cases)	486		537		22	0	362			733		232
SNPs												
genome-wide DNA m	ethyl											
proteomics												
CHIPseq												
RNAseq												
inflammation markers	5											

Initially only ADNI + PPMI available

• Choose ADNI + PPMI as discovery cohorts for joint AD/PD stratification. Others for validation purposes.

Largely rely on genotype based stratification


- Data availability
- Significant genetic disease component (Arenson et al., Journal of Genetics, 2018)

Other data used for biological contextualization

An Approach for Mechanisms Based Patient Stratification

Unsupervised joint clustering of Alzheimer's + Parkinson's patients

Most Discriminating Mechanisms in Detail

Subgraph Number	Genes in subgraph	Subgraph	Neighbourhood of the subgraph
Subgraph 5	MTHFR	Outriess Outriess Outriess Outriess Outriess Outriess	
Subgraph 10	IL18, NLRP3	9 1.18	
Subgraph 12	AKT1	⊕ Act1	Service of the servic
Subgraph 13	МАРК9	о мата	0.000

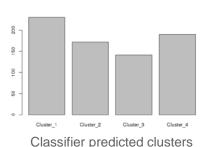
NeuroMMSig mechanisms

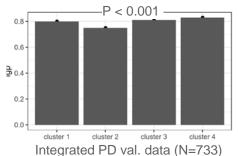
Cluster 3

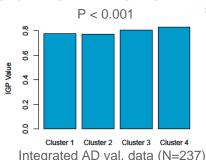
Cluster 2

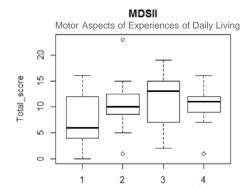
Cluster 1

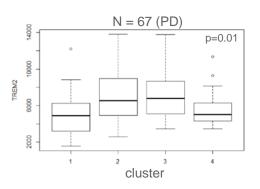
Cluster 4

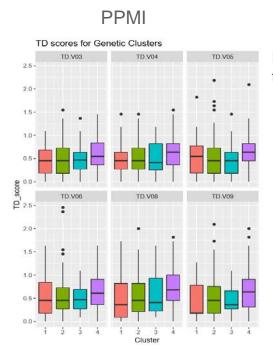

- Follate metabolism (AD)
- Vitamin metabolism (AD)
- Epigenetic modification (PD)
- IL signaling (AD, PD)
- Caspase signaling (AD, PD)
- AKT/mTOR signaling (AD, PD)
- GBR10 signaling (PD)
- Nerve growth factor (AD)
- Matrix metalloproteinase (AD)


MAPK signaling (AD, PD)

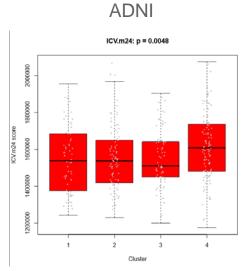

Joint sparse NMF based (bi-)clustering of ADNI + PPMI genotypes


Clusters are confirmed in Validation Data


IGP = proportion of samples in a cluster, whose nearest neighbors are also in the same cluster. (Kapp & Tibshirani, 2007)



- MIF (PD)
- TYRO3 (PD)



Clusters express differences in neuroinflammation and motor symptoms in PD

Association to Clinical Variables in PPMI and ADNI

P < 0.01 at all time points

Association of brain volume shrinkage and neuroinflammation: Datta et al., Brain 2017

Association of clusters to tremor severity in PD and inter-cranial brain volumes in AD.

Summary of Key Achievements

Novel Data Science methods confirm relevance of knowledge derived disease mechanisms

- predicting disease onset: AD risk model (Khanna et al., Sci Rep, 2018)
- mechanism based patient stratification

Stratification has been validated in integrated AD and PD cohorts

Downstream analysis ongoing

Identified patient sub-groups differ in

- neuroinflammation
- motor symptoms (PD)
- inter-cranial brain volumes (AD)

Acknowledgements

Fraunhofer SCAL

- Asif Emon
- Daniel Dominguez-Fernandez
- Shashank Khanna
- Anandhi Iyappan
- Colin Birkenbihl
- Reagon Kharki
- Martin Hofmann-Apitius

UCB

- Ashley Heinson
- Ping Wu
- Johann de Jong
- Ashar Ahmad
- Phil Scordis

Backup

Linking to Biological Mechanisms – Two Examples

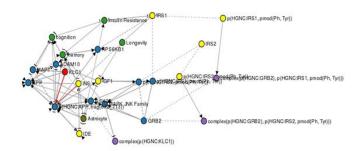
Suggested in Nighot et al., 2016 A)

OpenBEL (Kodamulliletal., 2015) Pathway mapping for OpenBEL:
NeuroMMSig (Domingo-Fernandez et al.,
Bioinformatics, 2017)

BECN

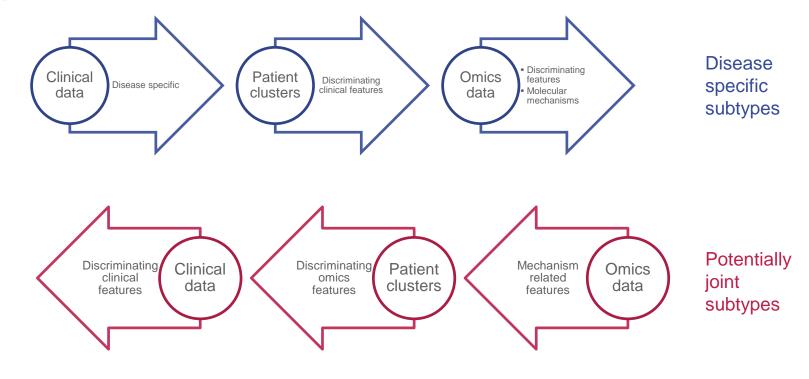
BECN

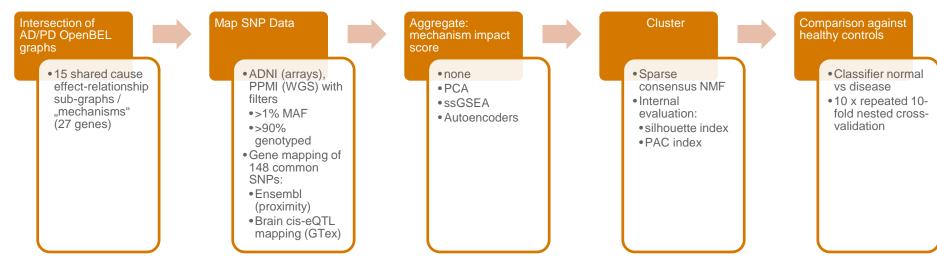
BECN

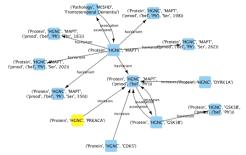

BAPBA2

BAGS

Insulin signaling – NK cell mediated cytotoxicity


Suggested in Lorini et al., 1994




Options for Identifying a Mechanism Based Disease Subtypes

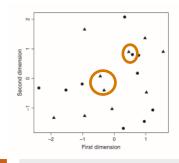
Joint AD/PD Clustering Approach for Genotype Data (Discovery)

Validation with external data (example: ROSMAP)

Logistic regression classifier (discovery cohort)

 Cross-validated AUC (overoptimistic)

Assign ROSMAP patients to clusters

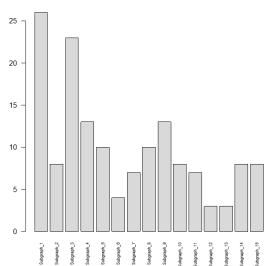

- Encode patients using 148 SNPs
- •ssGSFA
- Autoencoder (trained with ADNI + PPMI)

Evaluation

• IGP measure (Kapp & Tibshirani, 2007)

Contextualization

- Differential protein expression
- Differential gene expression
- Correlation with CpGs
- Correlation with histone marks (CHIPseq)



Mechanism Impact Score

SNP → gene mapping:

- proximity (Ensembl): +/- 50Kbp
- eQTLs (GTex database)

No. of rsID for each Subgraph

	SNP1	SNP2	SNP3	
Patient 1	0	0	2	
Patient 2	2	1	0	
Patient 3	1	2	0	

	SNP1	SNP2	SNP3	
Patient 1	0	0	2	
Patient 2	2	1	0	
Patient 3	1	2	0	

Mechanism 1

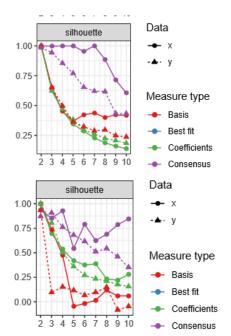
Mechanism N

Aggregate scores of member SNPs:

- PCA
- Autoencoder networks
- ssGSEA

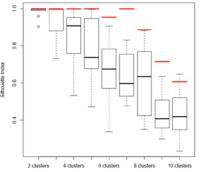
Patient specific mechanism impact profile by

	Mechanism 1	Mechanism 2	Mechanism 3	
Patient 1				
Patient 2				
Patient 3				

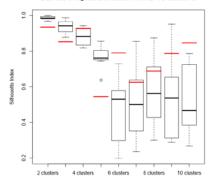

No robust clustering with raw genotype and PCA based aggregation

Raw genotype + sparse NMF

Clusters	AD	PD	Total	SI
Cluster 1	190	134	324	1
Cluster 2	296	224	520	1

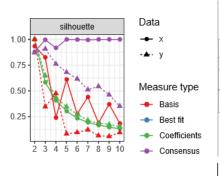

PCA + sparse NMF

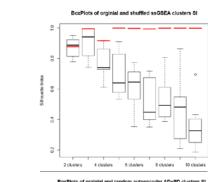
Clusters	AD	PD	Total	SI
Cluster 1	102		102	1
Cluster 2	384	358	742	0,95
				0,975

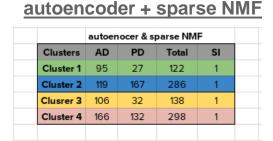


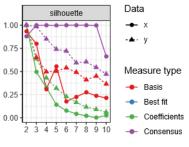
Dashed = $10 \times r$ randomly shuffled data

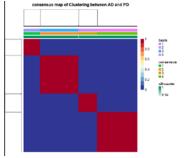
BoxPlots of orginial and random PCA AD-PD clusters SI

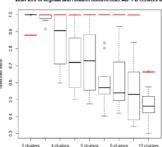

Clusters are probably random artifacts.



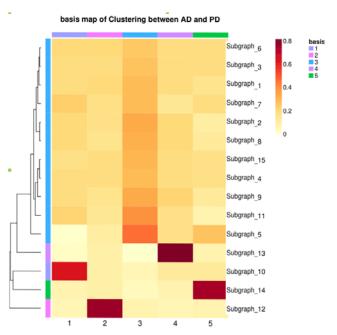

Robust clustering with ssGSEA and autoencoder based SNP aggregation


ssGSEA + sparse NMF

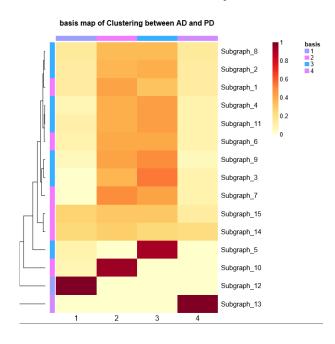

see	d_ica_r	ank_2:1	0_nrun_5	0
Clusters	AD	PD	Total	SI
Cluster 1	65	27	92	1
Cluster 2	80	65	145	1
Clusrer 3	81	53	134	1
Cluster 4	88	83	171	1
Cluster 5	172	130	302	1



onsensus map of Clustering between AD and PD

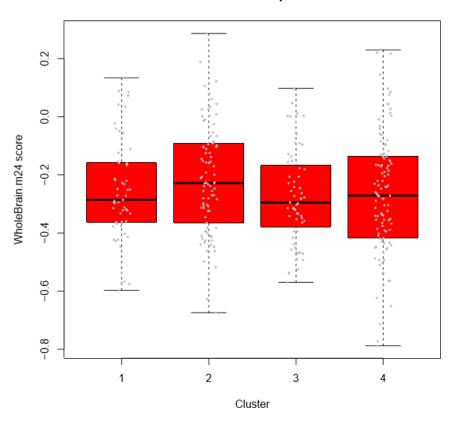

No. of cluster confirmed with PAC index analysis (Senbabaoglu et al., Sci Rep 2014).

Clusters are highly stable and clearly better discriminated than random data



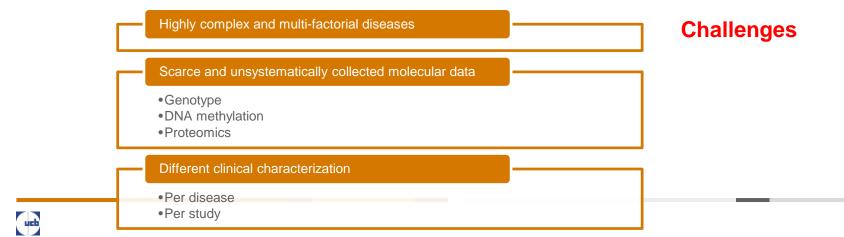
Association of Mechanisms to different Clusters

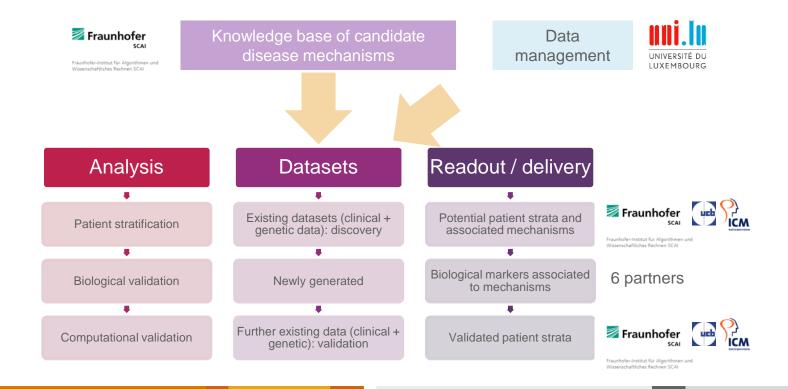
ssGSEA + sparse NMF



Autoencoder + sparse NMF

WholeBrain.m24: p = 0.059




AETIONOMY: Vision & Key Challenges

Developing a "mechanism-based" taxonomy of Alzheimer's and Parkinson's Disease

- Current classification of neuro-degenerative diseases is purely phenotype based
- Vision: a molecular mechanism based classification
 - Potentially new ways of treating patients
- Project goal: first proof of principle

Scientific Approach in AETIONOMY

